Neighbour set distinguishing edge colourings from lists of asymptotically optimal size

Jakub Przybyło
AGH University of Science and Technology
jakubprz@agh.edu.pl

(joint work with Jakub Kwaśny)

Abstract

Let $G=(V, E)$ be a graph. Consider an edge colouring $c: E \rightarrow C$. For a given vertex $v \in V$, by $E(v)$ we denote the set of all edges incident with v in G, while the set of colours associated to these under c is denoted as: $$
\begin{equation*} S_{c}(v)=\{c(e): e \in E(v)\} . \tag{1} \end{equation*}
$$

The colouring c is called adjacent vertex distinguishing if it is proper and $S_{c}(u) \neq$ $S_{c}(v)$ for every edge $u v \in E$. It exists if only G contains no isolated edges. The least number of colours in C necessary to provide such a colouring is then denoted by $\chi_{a}^{\prime}(G)$ and called the adjacent vertex distinguishing edge chromatic number of G. Obviously, $\chi_{a}^{\prime}(G) \geq \chi^{\prime}(G) \geq \Delta$, where Δ is the maximum degree of G, while it was conjectured [3] that $\chi_{a}^{\prime}(G) \leq \Delta+2$ for every connected graph G of order at least three different from the cycle C_{5}. Hatami [1] proved the postulated upper bound up to an additive constant by showing that $\chi_{a}^{\prime}(G) \leq \Delta+300$ for every graph G with no isolated edges and with maximum degree $\Delta>10^{20}$.

Suppose now that every edge $e \in E$ is endowed with a list of available colours L_{e}. The adjacent vertex distinguishing edge choice number of a graph G (without isolated edges) is defined as the least k so that for every set of lists of size k associated to the edges of G we are able to choose colours from the respective lists to obtain an adjacent vertex distinguishing edge colouring of G. We denote it by $\operatorname{ch}_{a}^{\prime}(G)$. Analogously as above, $\operatorname{ch}_{a}^{\prime}(G) \geq \operatorname{ch}^{\prime}(G)$, while the best (to my knowledge) general result on the classical edge choosability implies that $\operatorname{ch}^{\prime}(G)=\Delta+O\left(\Delta^{\frac{1}{2}} \log ^{4} \Delta\right)$, see [2]. Extending the thesis of this, a four-stage probabilistic argument granting $\operatorname{ch}_{a}^{\prime}(G)=\Delta+O\left(\Delta^{\frac{1}{2}} \log ^{4} \Delta\right)$ for the class of all graphs without isolated edges shall be presented during the talk.

\section*{References:} [1] H. Hatami, $\Delta+300$ is a bound on the adjacent vertex distinguishing edge chromatic number, J. Combin. Theory Ser. B 95 (2005) 246-256. [2] M. Molloy, B. Reed, Near-optimal list colorings, Random Structures Algorithms 17 (2000) 376-402. [3] Z. Zhang, L. Liu, J. Wang, Adjacent strong edge coloring of graphs, Appl. Math. Lett. 15 (2002) 623-626.

