Ramsey graphs induce subgraphs of many different sizes

Bhargav Narayanan * Julian Sahasrabudhe† István Tomon‡
July 13, 2017

1 Abstract

A graph on n vertices is said to be C-Ramsey if every clique and independent set of the graph has size at most $C \log n$. The only known constructions of Ramsey graphs are probabilistic in nature and it is believed that such graphs possess many of the same properties as dense random graphs. A conjecture of Erdős and McKay addresses such a property; they ask whether there exists a constant $\gamma = \gamma(C)$ such that every C-Ramsey graph on n vertices contains an induced subgraph with k edges for any $k \in \{0, \ldots, \gamma n^2\}$.

We make the following small step towards the solution of this conjecture: we prove that for any fixed $C > 0$, if G is a C-Ramsey graph on n vertices, then there are at least $n^2 - o(1)$ different positive integers k that occur as the number of edges of some induced subgraph of G.

*University of Cambridge, e-mail: b.p.narayanan@dpmms.cam.ac.uk
†University of Memphis, e-mail: julian.sahasra@gmail.com
‡EPFL, e-mail: istvan.tomon@epfl.ch