The structure of large sum-free sets of integers

Tuan Tran
ETH Zurich

A subset A of integers is called sum-free if it contains no triple of elements x, y, z with $x+y=z$. Here we provide a structure characterization of sum-free subsets of $\{1,2, \ldots, n\}$ of density at least $2 / 5-c$, where $c>0$ is an absolute constant. As an application, we derive a robust stability version of Hu's theorem [Proc. Amer. Math. Soc. 80 (1980), 711-712] about the maximum size of a subset of $\{1,2, \ldots, n\}$ which is a union two sum-free sets. We use this result in conjunction with the method of hypergraph containers to show that the number of subsets of $\{1,2, \ldots, n\}$ that can be partitioned into two sum-free sets is $\Theta\left(2^{4 n / 5}\right)$, confirming a conjecture of Hancock, Staden and Treglown.

